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We discuss recent empirical results obtained by analyzing high-frequency data 
of a stock market index, the Standard and Poor's 500. We focus on the scaling 
properties and on its breakdown of the index dynamics. A simple stochastic 
model, the truncated L6vy flight, is illustrated. Successes and limitations of this 
model are presented. A discussion about similarities and differences between the 
scaling properties observed in financial markets and in fully developed turbu- 
lence is also provided. 
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1. I N T R O D U C T I O N  

Econophysics is an interdisciplinary subfield, with a growing number  of 
practitioners. We shall briefly describe the spirit and substance of some 
recent work that focuses on scaling and its breakdown in financial data. 

During the last thirty years, physicists have achieved important  results 
in the field of phase transitions, statistical mechanics, nonlinear dynamics 
disordered and self-organized systems. In these fields, power laws, scaling 
and unpredictable (stochastic or deterministic) time series are present and 
the current interpretation of the underlying physics is often obtained using 
these concepts. 

With this background in mind, it may surprise scholars trained in the 
natural science to learn that one of the first use of a power-law distribution 
took place in the social sciences. Almost exactly 100 years ago, the Italian 
social economist Vilfredo Pareto investigated the statistical character of 
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the wealth of individuals in a stable economy by modeling them using the 
distribution 

y=x- ' ,  (1) 

where y is the number of people having income x or greater than x and v 
is an exponent that Pareto estimated to be ~ 1.5. t~) Pareto noticed that his 
result was quite general and applicable to nations "as different as those of 
England, of Ireland, of Germany, of the Italian cities, and even of Peru." 

It should be fully appreciated that the concept of a power-law distribu- 
tion is counter-intuitive. A power-law distribution lacks any characteristic 
scale. This property prevented the use of power-law distributions in the 
natural sciences until the recent emergence of new paradigms (i) in prob- 
ability theory, thanks to the work of Paul L6vy and Kolmogorov and 
thanks to the application of power-law distributions to Several problems 
pursued by Mandelbrot; and (ii) in the study of phase transitions in which 
the concept of scaling of thermodynamic potentials and correlation func- 
tions was introduced. 

Other processes and concepts widely recurrent in statistical physics 
have been used quite early in the study of financial systems. Self-similarity 
in the price change distributions is implicit in the pioneering work of 
Bachelier. t2) Scaling (in the sense of power-law tails in the distribution of 
logarithmic changes of prices) and self-similar non-Gaussian distributions 
of logarithmic changes of prices were first proposed and tested by 
Mandelbrot in '63 by modeling and analyzing the statistical properties of 
cotton prices. ~3) 

In this paper, we briefly recall some recent empirical results obtained 
by analyzing the time evolution of the Standard & Poor 500 index of the 
New York Stock Exchange recorded with high temporal resolution. We 
also discuss the properties of a simple stochastic model, the truncated Lrvy 
flight (TLF). This model is able to describe several of the major features 
observed in empirical data. Limitations of this simple model are also 
addressed. We end by discussing similarity and differences observed in the 
scaling properties of the price dynamics in a financial market and the 
dynamics of the velocity of a 3-dimensional turbulent fluid. 

II. SCALING A N D  ITS B R E A K D O W N  IN THE S&P 500 INDEX 

Stock exchange time series have been modelled as stochastic processes 
with very short time memory since the seminal study of Bachelier published 
at the beginning of this century. ~2~ Since then several stochastic models 
have been proposed and tested in the economics t3-9~ and physics ~~ 
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literature to cite only a few studies. Alternative approaches based on the 
paradigm of chaotic dynamics have been also proposed. (15-17) The most 
widely-accepted models state that the variations of share price is a random 
process with very short time memory. For the distribution of variations of 
the logarithm of asset prices several proposal have been published. These 
include (i) a normal distribution, ~2) (ii) a Lrvy stable distribution, (3) (iii) 
leptokurtik distributions generated by a mixture of normal distributions ~6) 
and (iv) ARCH/GARCH models, t7,s) 

The proposals of: (i) a normal distribution, (2) and (ii) a Lrvy stable 
distribution (3) obey respectively the central-limit-theorem (18) or a gener- 
alized version of it. (~9) The most striking difference between these two 
stochastic processes involves the wings of the distributions. Distinguishing 
between the two processes (i) and (ii) by comparing the distribution wings 
can be quite difficult because financial data sets (as all other data sets) are 
unavoidably limited. To maximize the amount of data to be analyzed in a 
limited time interval (limited to avoid that underlying rules or deep 
economics changes could happen inside the investigated period), we chose 
to investigate high frequency data. 

Data, kindly provided by the Chicago Mercantile Exchange, consist of 
all 1,447,514 records of the S& P 500 cash index recorded during the 6-year 
period 1/84-12/89. The time intervals between successive records are not 
fixed: the average value between successive records is close to 1 min during 
1984 and 1985 and close to 15 s during 1986-1989. We define the trading 
time as a continuous time starting from the opening of the day until the 
closing, and then continuing with the opening of the next trading day. 
From this data base, we select the complete set of non-overlapping records 
separated by a time interval At +_ eat (where e is the tolerance, always less 
than 0.035). We denote the value of the S&P 500 as y(t), and we define 

z(t) =- y(t)  -- y( t  -- At). (2a) 

In the high frequency regime, the two stochastic processes z(t) (price dif- 
ferences) a n d  

r(t) - l n ( y ( t  + A t ) -  ln(y(t)) (2b) 

logarithmic differences have similar statistical properties. This is due to the 
fact that in the regime z(t) ,~ y(t),  r ( t )=  In[ 1 + z( t ) /y( t )]  is bounded by 

z( t ) /y( t )  z(t) 
<r( t )  < ~  (3) 

1 + z( t) /y( t)  y(t) 
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and z(t) is a "fast" variable, whereas y(t) is a "slow" variable being the 
integral of z(t). 

To quantitatively characterize the experimentally-observed process, we 
determine tl4) the probability distribution P(z) of index variations for dif- 
ferent values of At. We select At values that are logarithmically equally 
spaced ranging from 1 to 1000 min. The number of data in each set is 
decreasing from the maximum value of 493,545 (At = 1 min) to the mini- 
mum value of 562 (At = 1000 min). We note ~14) that the distributions are 
non-Gaussian, indeed, they have wings larger than expected for a normal 
process. A determination of the parameters characterizing the distributions 
is difficult if one uses methods that mainly investigate the wings of distri- 
butions, especially because larger values of At imply a reduced number of 
data. 

Therefore we use a different approach: we study the "probability of 
return to the origin" P ( z = 0 )  as a function of At. With this choice we 
investigate the point of each probability distribution that is least affected 
by the noise introduced by the finiteness of the experimental data set. Our 
investigation of P(0) versus At in a log-log plot ~14) shows that the data are 
well-fit by a straight line characterized by the slope -0.712 +__ 0.025. We 
observe a non-normal scaling behavior (slope:/:-0.5) in an interval of 
trading time ranging from 1 to 1000 min. 

This empirical finding agrees with the theoretical model of a Lrvy 
flight ~2~ or L~vy walk. ~21) In fact, if the central region of the distribution 
is well-described by a Lrvy stable symmetrical distribution, t22) 

L~(z, At) =---  exp(-),Atq ~) cos(qz) dq, (4) 
7t 

of index ~ and scale factor y at At = 1, then the probability of return is 
given by 

F(1/0t) 
P(0) = L~(0, At)= zr~(~dt)l/~. (5) 

By using the value -0.712 from the analysis of the probability of return 
one obtains the index a = 1.40 +_ 0.05. t~4) 

It is known from the literature (23) that the intraday variance of the 
logarithmic price or price difference is not constant. We perform a check to 
determine if this fact affects the scaling properties of the price difference. 
Specifically, we select from our database the price differences recorded 
during a trading day within the window time starting 90 minutes after the 
opening and ending 2 hours before closing. In this way, we do not take 
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into account the overnight returns in our analysis and moreover we also do 
not use the periods of higher volatility known to occur at the beginning and 
end of each trading day. With this analysis we obtain a = -0 .725  _+ 0.025 
a value very close to the one obtained for the complete set of data. Hence 
this test shows that the overnight returns do not affect significantly the 
scaling properties (a) of the price differences. 

We also check if the scaling extends over the entire probability distri- 
bution as well as z -  0. All the distributions agree well with a L~vy stable 
distribution, c~4'24) The distributions obtained with the highest temporal 
resolution (At < 10) show that in addition to the good agreement with the 
L~vy (non-Gaussian) profile observed for almost three orders of magnitude 
an approximately exponential fall-off is present. The clear deviation of the 
tails of the distribution from the L~vy profile shows us that the experimental 
tails are less fat than expected for a L~vy distribution. The deviation from the 
L~vy distribution is not observable for At > 10 due to the limited number of 
records used to obtain these distributions. 

The L~vy distribution has an infinite second moment (if 0c < 2 ) .  (22) 

However, our empirical finding of an exponential (or stretched exponen- 
tial) fall-off implies that the second moment is finite, thereby resolving the 
question about the finiteness of the variance of the price change distribu- 
tion. (25) This conclusion might at first sight seem to contradict our observa- 
tion of L6vy scaling of the central part of the price difference distribution 
over fully three orders of magnitude. However, there is no contradiction 
since, for example, the above findings might be interpreted in terms of a 
simple stochastic process, the truncated L~vy flight, c26) 

III. THE TRUNCATED LEVY FLIGHT 

The truncated L~vy flight (TLF) has been introduced by Mantegna 
and Stanley in ref. 26. A TLF is defined as a stochastic process { x} charac- 
terized by the following probability density function 

f i  x > f '  
T ( x )  = - 1 L ( x )  - - [  <~ x <<. Y 

x < - - ~  

(6) 

where 

L ( x )  - -  exp(-yq=) cos(qx) dq (7) 
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is the symmetrical Lrvy stable distribution of index 0c(0 < 0c <~ 2) and scale 
factor y (y > 0), c~ is a normalizing constant and t' is the cutoff length. For 
the sake of simplicity, we set y = 1. 

The central limit theorem (CLT) is fundamental to statistical 
mechanics. It states that when n ~ oo, the sum 

z . -  ~ x~ (8) 
i = 1  

of n stochastic variables {x} that are statistically independent, identically 
distributed and with a finite variance, converges to a normal (Gaussian) 
stochastic process. Generally, n ~ 10 is sufficient to ensure convergence. In 
a dynamical system, Eq. (8) defines a random walk if the variable x is the 
jump size performed after a time interval At and n is the number of time 
intervals. In this lecture, the "number of variables" n and the "time" t = nAt 
can be interchanged everywhere. 

We investigate the probability distribution P(z,)  of the stochastic pro- 
cess of Eq. (8) when { x} is a TLF, i.e., a stochastic process with probabil- 
ity distribution given by Eq. (6). We monitor the degree of convergence of 
the TLF to the asymptotic normal process by investigating the probability 
of return to the origin of the process P(z ,  = 0). The reason for this choice 
is twofold, first this will give us a concrete parallel to what we investigated 
in the previous section, and second the point z,  = 0  of the distribution P(z) 
is the last point to converge to the asymptotic normal process for sym- 
metrical stochastic processes. 

For low values of n, P ( z ,=O)  takes a value very close to the one 
expected for a Lrvy stable process 

F(1/oc) 
P(z,, = 0) -~ L(z,, = 0) - lrocnl/, , . (9) 

For large values of n, P(z ,  
process, 

= 0) assumes the value predicted for a normal 

1 
P(z,, = 0) ~- N(z,, = 0) = .,,/2n: ( t:-" O'o-0C, Y) n '/z' (10) 

where ao(Oq f )  is the standard deviation of the TLF stochastic process { x}. 
In the interval 1 ~< 0c < 2, the crossover between the two regimes has 

been determined in ref. 26 as: 

n• - At '~', (11) 
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where 

2 = / ( =  - -  2 )  [ ] A= 2F(1/e)[F(1 + e )  sin(r~e/2)/(2-e)] 1/2 (12) 

The description of the convergence process is not crucially depending on 
the exact shape of the cut-off (27) and some results of ref. 26 have been 
confirmed analytically for an exponential cut-off in ref. 28. 

By performing numerical simulations, it is possible to investigate the 
process of convergence of the TLF to its asymptotic Gaussian process. To 
generate a Lrvy stable stochastic process of index ~ and scale factor y = 1, 
we use the algorithm of ref. 29. Other algorithms can be found in the math- 
ematical literature. (3~ We verify that the probability of return to the origin 
indicates with high accuracy the degree of convergence of the process to 
one of the two asymptotic regimes. 

To summarize, our study shows that by investigating the probability 
of return to the origin of an originally quasi-stable non-normal stochastic 
process with finite variance a clear crossover between Lrvy and Gaussian 
regimes is observable. Hence a Lrvy-like probability distribution can be 
experimentally observed for a long (but finite) interval of time (or number 
of variables) even in the presence of stochastic processes characterized by 
a finite variance. However, not all the features observed in the S&P 500 
dynamics are described by the TLF model. The simplest version of the 
model cannot describe the short time memory (of the order of 20 minutes 
or less) observed in the empirical data (24'31) and also does not explain the 
empirical observation of the time dependence of the parameter ), which is 
fluctuating with burst of activity localized in specific months. (~4"24) The 

parameter is related to what is called "volatility" in the economic 
literature. (32) 

IV. A N A L O G I E S  A N D  D I F F E R E N C E S  W I T H  T U R B U L E N C E  

Other models might also be considered to fully describe the stock 
market data. For example, by using a rather different approach, an alter- 
native possible physical phenomenon that it is worthwhile to investigate is 
turbulence. (33) The goal is to see if turbulence might be used as a paradigm 
to describe some of the phenomena empirically observed in the analysis of 
data of the S&P 500 dynamics. The rational for this choice is that it is 
known that intermittency of the dissipation rate and non-Gaussian profile 
of the probability density function of velocity changes are observed in the 
time evolution of a fully turbulent fluid moving in a 3-dimensional space. 
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This research has been performed independently by different groups (31" 34, 35) 

using different data bases. 
To investigate analogies and differences between the quantitative 

measures of fluctuations in an economic index and the fluctuations in 
velocity of a fluid in a fully turbulent state we have systematically com- 
pared t3~) the statistical properties of the S&P 500 cash index with the 
statistical properties of the velocity of turbulent air. 

The turbulence data were kindly provided by Prof. K. R. Sreenivasan. 
Measurements were made t36) in the atmospheric surface layer about 6 m 
above a wheat canopy in the Connecticut Agricultural research station. 
The Taylor microscale Reynolds number R~ was of the order of 1500. The 
file consists of 130,000 velocity records v(t) digitized and linearized before 
processing. The associated velocity differences is defined as Uat( t) =- v( t) - 
v ( t - d t ) .  

Quantitative parallel analysis have been performed t3~) by measuring 
the time dependence of the standard deviations az(dt) and ate(At) of P(Z) 
and P(U), we find that: (i) In the case of the S&P 500 index variations the 
time dependence of the standard deviation, when d t >I 15 minutes fits well 
the behavior 

az(dt)  oc (At) ~ (13) 

The exponent is close to the typical value of 0.5 observed in random pro- 
cesses with independent increments. (ii) The velocity difference of the fully 
turbulent fluid shows a time dependence of the standard deviation, fitting 
the behavior 

av(dt)  oc (Zl/) 0"33 (14) 

which is observed in short-time anticorrelated random processes. 
Equivalent conclusions are reached if we measure the spectral density 

of the time series y(t) and v(t). 
Another difference between the two processes is observed by inves- 

tigating the probability of return to the origin P( U= 0) as functions of the 
time interval At between successive observations. The deviation from a 
Gaussian process is measured by comparing P ( U = 0 )  with the value of 
Pg(O). Pg(O) is determined starting from the measured values of a(At) by 
using the equation 

1 
Pg(O) = ~ a(At ) (15) 

valid for a Gaussian process. 
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We observe ~3a) a clear difference between P(0) and Pg(0). The difference 
observed shows that both PDFs have a non-Gaussian distribution, but the 
detailed shape and the scaling properties of the two PDFs are different. 

In a previous section we reported that a scaling compatible with a 
L6vy stable process is observed for economic data and indeed a L6vy dis- 
tribution reproduces quite well the central part of the distribution of the 
S&P 500 index variations. A similar scaling does not exist for turbulence 
data over a wide time interval. 

The parallel analysis of the statistical properties of an economic index 
and the velocity of a turbulent fluid in a 3-dimensional space shows that 
the two processes are quantitatively different. (3~) 

V. D I S C U S S I O N  
[ 

In this paper we discuss some recent work done by the authors in 
which we analyze and model high-frequency financial data. Our conclu- 
sions are: (i) the central part of the distribution of index changes is well 
described by a L6vy stable distribution; (ii) extreme events (distant from 
the origin for more than six standard deviations approximately) are not 
described by a L6vy stable distribution; (iii) the scaling property of a large 
part of the index changes distribution and its breakdown are better detected 
by investigating the probability of return to the origin rather than the far 
tails of the measured changes distributions; (iv) a simple model, the TLF 
describes several (but not all) the empirical observations. 

The result of point (i) is in partial agreement with the 1963 description 
of the stochastic nature of financial time series done by Mandelbrot ~3) 
which states that distribution of changes of the logarithm of prices are non- 
Gaussian L6vy stable distributions. The disagreement between the present 
results and Mandelbrot's seminal results lays in the description of the far 
tails of the distributions. Mandelbrot describes the entire distribution as a 
L6vy stable distribution while we present evidence that, in addition to the 
presence of scaling, it is also possible to observe in high-frequency data its 
breakdown. Specifically, by investigating the probability of return to the 
origin of the stochastic process we observe breakdown of the scaling in the 
far tails of the index changes distributions measured with At < 10 minutes 
and we also estimate a breakdown of the scaling in time after a very long 
but finite interval. The observed breakdown of the scaling has two very 
important consequences: (a) the second moment of the index changes is 
finite and (b) the self-similarity of the index change distribution is only 
approximately true and the shape of the distribution is progressively 
changing from a L6vy stable shape to a Gaussian shape from short-time to 
long-time horizons. 
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We have tried to give a concrete example on how and why physicists 
may consider today financial systems as very interesting. 

It is true that, at the moment, it may seem to be an unusual challenge 
for a physicist to investigate economic systems by using tools and paradigms 
developed to describe physical phenomena. Physical phenomena and 
economic systems are, of course, rather different. In physical phenomena 
one often may apply conservation laws and/or find equilibrium states 
characterized by the maximization of some (extremely relevant) extensive 
function as, for example, entropy. In financial systems nothing similar has 
been discovered yet. This makes extremely challenging the modelization of 
financial "complex systems." 

On the other hand, physicists are today increasingly involved in 
research projects devoted to obtain theoretical, numerical and experimental 
descriptions of many-body non-equilibrium disordered (in the considered 
space and/or in time) systems (included non-ergodic systems). For these 
scholars an interdisciplinary approach to financial problems might provide 
a set of new problems connotated by either fundamental or applied aspects. 
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